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Abstract
Two new methods for improving the measurement precision of a general
test factor are proposed and evaluated. One new method provides a multi-
dimensional item response theory estimate obtained from conventional ad-
ministrations of multiple-choice test items that span general and nuisance
dimensions. The other method chooses items adaptively to maximize the
precision of the general ability score. Both methods display substantial in-
creases in precision over alternative item selection and scoring procedures.
Results suggest that the use of these new testing methods may significantly
enhance the prediction of learning and performance in instances where stan-
dardized tests are currently used.

During most of the 20th century, the role of general cognitive ability (g) for pre-
dicting future learning and job-performance has been hotly disputed. Schmidt and Hunter
(1998) summarize 85 years of validity research, stating that the most well known conclu-
sion from this work is that "for hiring employees without previous experience in the job
the most valid predictor of future performance and learning is general mental ability" (p.
262). Ree and Earles (1991a, 1992, 1994) arrive at a similar conclusion for the prediction
of both training and job success. These conclusions emphasize the importance and useful-
ness of well constructed measures of general ability. It follows that more precise measures
of g will lead to a number of desirable personnel selection outcomes, including increases
in employee performance, and increased learning of job-related skills (Hunter, Schmidt, &
Judiesch, 1990).

The precursor to modern ability theory (Spearman, 1904) states that the variation in
error-free mental measurements is due to two factors. One factor, termed general cognitive
ability is common to all mental ability measurements, while the other factors s are test
specific. Given that s and g are uncorrelated, and the s's are uncorrelated with each other,
Spearman's two-factor formulation suggests that a composite score formed from a number
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GENERAL ABILITY MEASUREMENT 2

of tests will have more g than any of the individual components used to form the composite.
Although Spearman's two-factor theory has been largely supplanted by hierarchical models
of intelligence (which allow for the existence of intermediate group factors), g is widely
assumed by modern cognitive theorists to exist at the apex of all mental measurements.
Accordingly the prevailing approach to general cognitive ability measurement is consistent
with Spearman's original formulation. This approach attempts to average out much of
the variance due to the unique demands made by each test or test-grouping by computing
composite scores from a large number of highly diverse tests.

Since Spearman's early insight, progress towards the construction of a perfect measure
of general cognitive ability has been disappointing. The amount of g variance contained
in the best standardized measures currently in use may be as low as 64 to 75 percent of
the total variance (Jensen, 1998, p. 309; Ree & Ear les, 1991b). This lack of progress may
seem somewhat contradictory in light of substantial test-theory advances made during this
period (see Cronbach, 1970; Gulliksen, 1987; Horst, 1966; Lord, 1980; Lord & Novick, 1968;
Thurstone, 1947; van der Linden & Hambleton, 1997). Using modern test construction
techniques, very precise measures of narrowly defined abilities, proficiencies, or knowledge
domains can be constructedmeasures which correlate .95 or greater with the true un-
derlying proficiency. For example, item response theory (IRT) techniques can be used to
construct highly precise scales of unidimensional domains. Unfortunately these scales and
associated domains tend to contain high levels of specificity, and the problem originally
addressed by Spearman remains: How can specific variance contained in individual tests
be removed to obtain a precise measure of general ability? Thus the precise measurement
of narrowly defined abilities as afforded by modern test theory does not guarantee precise
measurement of the general underlying cognitive ability.

To deal effectively with the contributions of systematic error, Humphreys (1981, 1985,
1986) has advocated measures containing a variety of unwanted or specific variance. How-
ever, practical concerns over test-length and efficiency have placed limits on the numbers
and diversity of tests contained in typical selection batteries. For example, general ability
scores are often computed from a composite consisting of a small number of tests (e.g. math,
verbal, spatial, and reasoning). Consequently, the specific errors associated with unique test
demands tend not to cancel to a sufficient degree.

What is needed then is an approach to cognitive ability estimation that can sys-
tematically remove specific-factor variance from the general ability estimate. One set of
approaches are based on factor score estimation proceduresa collection of methods for
expressing factors in terms of the observed test scores (Harman, 1976, Chapter 16). These
methods form an estimate of g from linear combinations of test scores. In practice these
methods tend to produce factor score estimates that are highly correlated with each other,
and with unit weighted composites (Ree & Ear les, 1991b). These findings are consistent
with Wilks' (1938) theorem which states that correlations among differentially weighted
composites tend toward one as the number of positively correlated tests in the composite
increases. These factor score estimation procedures are rarely used in practice since they
tend to produce only marginal or trivial gains in precision over less complex unit weighting
procedures.

An appealing alternative approach for the estimation of general-ability models item
(rather than test) variables in terms of uncorrelated general and specific (or nuisance)
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GENERAL ABILITY MEASUREMENT 3

dimensions. The nuisance dimensions carry irrelevant variance which inflates and distorts
the item-variance. By partialling out this unwanted variance at the item, rather than test-
score level, the precision of ability estimation can be greatly enhanced, depending on the
level of influence of the nuisance dimensions on the item-response variables. As with existing
methods, accurate estimation of general ability requires a sufficiently broad representation
of nuisance dimensions by test-items in the battery. However, since the effects of nuisance
dimensions on item-responses are modeled explicitly, accurate measurement of g by this
approach does not require random cancelation of specific errors across a large number of
test scores.

Two new methods of general ability measurement are presented which provide a mech-
anism for removing unwanted item variance. There are several fundamental characteristics
of the approaches presented here which distinguish them from traditional methods of gen-
eral cognitive ability measurement. First, unlike traditional approaches that are based on
classical test theory, both proposed approaches are based on multidimensional item response
theory techniques. Second, both approaches assume a residualized form of the underlying
factor model. That is, these methods partial out the effects of unwanted variance from the
item response variables. This residualized form of the model expresses each item variable
in terms of uncorrelated general and nuisance dimensions. A third distinguishing feature of
one proposed approach is that items are selected adaptively to maximize the precision of
the general ability score.

Although compelling arguments for the superiority of the proposed methods can be
made on theoretical grounds, the level of improved measurement efficiency may not outweigh
their additional computational complexity. To estimate likely benefits achieved by a realistic
application, levels of precision for proposed and alternative techniques are evaluated from
simulated response data based on a high-stakes high-volume personnel selection battery.

Item Response Model and Ability Estimation

Many constructs measured by psychological tests can be conceptualized in terms of
a hierarchy of abilities. Table 1 displays a set of equations for a hypothetical three-level
factor model, where each ability 7/3 is expressed in terms of two sources 03 and 7.1k (for
j = 1, ...,p; k = 1, ...,p; j k). The 0.3 are random ability variables which are uncorrelated
with each other. The 7/3 are functions of 0j and other 77k At the highest level is general
ability denoted by ni (= 01). At the next highest level are verbal and math abilities (772 and
713) which are assumed to be linear combinations of general ni and specific (02, 03) abilities.
At the lowest level are factors for AR, WK, PC, and MK abilities which are assumed to be
linear combinations of verbal or math abilities (7)2 and 713) and specific factors 04, 05, 06,07.

The general hierarchical model can be succinctly represented in matrix notation by

71=B77+0, (1)

where ?I is a p x 1 vector of ability variables, 0 is a p x 1 vector of specific random ability
variables, and B is the p x p coefficient matrix describing the influence of the latent ability
variables on each other. Here, B is a lower-triangular matrix with the main diagonal equal
to zero, E(0) = 0, E(00') = I, and I is apxp diagonal matrix with all diagonal elements
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GENERAL ABILITY MEASUREMENT 4

Table 1: Three level hierarchical factor model.

Level Ability Equation
3 General 771 = 01
2 Verbal 712 = b21771 + 02
2 Math 713 = b31771 + 03
1 AR: Arithmetic Reasoning 774 = b43773 + 04
1 WK: Word Knowledge 775 = b52772 + 05
1 PC: Paragraph Comprehension 776 = b62772 + es
1 MK: Math Knowledge 777 = b73773 + 07

equal to unity. Solving (1) algebraically for 71, we arrive at the reduced form

= (I B)i 0 . (2)

The covariance matrix among latent factors is given by E (7177') = TT', where
T = (I 13)-1.

In modeling responses to a battery of n individual items, we assume an underlying
continuous variable zi for each item i (i = 1, ...,n). Continuing with our example, let us
assume that there are a total of 105 itemseach item variable loading on one of the four
first-order factors (n4,775,716,7/7) through the relations:

'Y1,47/4 + 1

/z3o = T30,4./ ./4 + 630

(3)

Z31 = 31,5.6 + 31
WK (4)

Z65 = 765,57/5 + 665

Z66 = 766,6776 + 66
PC (5)

Z80 = 780,6776 + 80

= 781,7777 + 81
MK (6)

zio5 = 7105,7777 + 105

Note that each item variable is assumed to be a function of a single first-order factor and
a random error term Ei. The general relation can be summarized in matrix notation by

z = nri + 6 ,

5

(7)



GENERAL ABILITY MEASUREMENT 5

where z = {zi, zn}', I' is anxp coefficient matrix, and e is a n x 1 vector of random
error variables which are uncorrelated with each other, and with i.

When partitioning the latent factors into general and secondary (or nuisance) di-
mensions, a useful alternative parameterization for the item variables z is obtained by
substituting (2) into (7) which provides

z = r (I B)' 0 -I- e
= AO + e , (8)

where

A = r (I B)' . (9)

In (8), the latent item variables z are expressed directly in terms of uncorrelated abilities 0.
As described in the following section, this parameterization allows the focus of measurement
to be shifted away from the first-order correlated dimensions (774, 775,776, 717) and directly to
the general 01-dimension.

Given the hierarchical features of the model, a particular pattern of zero and nonzero
parameters emerges for the A-matrix. This pattern can be examined by setting appropriate
elements of the B and r matrices equal to 1 and by performing the matrix calculations
displayed on the right-hand side of (9). The pattern of free and fixed (zero) parameters for
the example defined by Eqs. (3) through (6) and Table 1 is displayed in Table 2. This pattern
resembles an extension of Holzinger's (1937) bi-factor model, where each item-variable loads
on three (rather than two) dimensions. McDonald (1985, pp. 105-107) suggests a similar
pattern of loadings for conducting hierarchical factor analyses. In general, if B and r are
known, then any hierarchical model of the form given by (2) and (7) can be reparameterized
by (8)2.

Given a set of tenable assumptions (Lord, 1980, p. 31), an item response model can
be formulated to describe the relation between the continuous item-variables z and the
dichotomous item responses u = { ul , u2, u}'. According to this model, if the value
of zi is larger than some item-specific threshold Si, then the item is answered correctly,
otherwise it is answered incorrectly. This model leads to the normal ogive response model
(Lord, 1952), or alternatively to an approximation given by the logistic function (Birnbaum,
1968). The effects of guessing can be incorporated into the model through the use of a lower
asymptote.

The multidimensional logistic form of this item-response model (Hattie, 1981) pos-
tulates p latent traits 0 = {01,02, ...,0p}' , where each trait affects performance on one or
more items. The observed data consist of a vector of scored responses u to n items, where
ui = 1 if item i is answered correctly, and ui = 0 otherwise. For ability 0, the probability
of a correct response is given by

Pi(0) P(Ui =110) = + 1+ exp [Da(0 bil.)]

2 If B and r are unknown, then it is possible to estimate A directly, although this form contains additional
parameters, and represents a more general model. Estimating parameters of a more general model can in
some cases reduce the precision of the estimates. However, this tendancy may be offset by increased sample
size.

1Cj
(10)
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GENERAL ABILITY MEASUREMENT 6

Table 2: A-matrix discrimination value pattern.

Factor
General Verbal Math AR WK PC MK

Item I II III IV V VI VII
Arithmetic Reasoning

1 a1,1 a3,1 a4,1
2 ai,2 a3,2 a4,2

30 al,30 a3,30 a4,30
Word Knowledge

31 a1,31 a2,31 a5,31

32 a1,32 a2,32 a5,32

65 al,65 a2,65 a5,65

Paragraph Comprehension
66 a1,66 a2,66 a6,66

67 a1,67 a2,67 a6,67

80 ai,80 a2,80 a6,80

Math Knowledge
81 a1,81 a3,81 a7,81

82 al,82 a3,82 a7,82

105 a1,105 a3,1o8 a7,105

where ci and bi are the guessing and difficulty parameters, respectively, for item i; 1 is a
p x 1 vector of l's; D is the constant 1.7; and a is a 1 x p vector of discrimination parameters
for item i corresponding to the i-th row of A given by (9). It follows from the assumption
of local independence that the probability of a set of observed responses for an examinee of
ability 0 is equal to

P (U1 = tt1 , U2 = U2, , Un = UnI0) =HP,(0)utQi(0)l-ui , (11)

where Q2(0) = 1 P2(0). The right hand side of (11) is algebraically equivalent to the
likelihood function L(0) where the responses are fixed at observed values.

Next, we shall consider the simultaneous estimation of the full set of p traits denoted
by 0-cognizant of the fact that our interests lie in the specification of the first element of
0, namely 01 which corresponds to the general ability dimension. Ability estimates for the
full vector 0 can be obtained by either maximum likelihood (ML) or Bayesian techniques
(Segall, 1996, in press). Given that the population distribution of ability is known, or
can be well approximated, Bayesian estimation is often preferable to ML. This is especially
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GENERAL ABILITY MEASUREMENT 7

true for short or higher dimensionality tests where item-response data are sparse. Bayesian
point estimates of ability can be defined as the mode of the posterior distribution f(01u),
which is proportional to the product of the likelihood and prior:

f(01u) oc L(uI0) f (0) .

In the current application we shall assume the prior f (0) to be a multivariate normal density
with mean vector 0 and covariance matrix I. The modal estimates, denoted by 0 , are those
values of 0 that satisfy the set of p simultaneous equations Oln A0111)180 = 0, where

and

a ln f (01u) = D Eviai 0 ,
ao

i=1

=
(1 ci) Pi.(0)

[Pi,(0) Pi,(0)]

Since there is no closed-form solution to this set of equations, an iterative method must
be used, such as the Newton-Raphson method. Suppose we let 0(m) denote the m-th
approximation to the value of 0 that maximizes ln f (01u) , then a better approximation is
generally given by

e(-4-1) = e(m) (5(771) ,

where (5(m) is the p x 1 vector

a
(5(m) k(e(m))]

1

x ln f(0(m)1u) .

The matrix J (0) is the matrix of second partial derivatives evaluated at 0 = 0(m) :

J (0) = D2 Eakwi I ,

where

=

i=1

Q i(0) [P2(0) at] Pi2(0)]
pi2(0) (1

Modal estimates are obtained through successive approximations using (12) and (13) until
convergence is reached.

When the joint posterior density f (0Iu) is multivariate normal, then the marginal dis-
tribution of primary interest f (Oilu) = f (01, 02, ..., 0 plu)d02 dOp is itself normally
distributed with its expected value equivalent to the corresponding 01-mode of the joint
posterior distribution (Anderson, 1984, Theorem 2.4.3, p. 31). This observation suggests
that for cases in which the posterior is well approximated by a multivariate normal distri-
bution (for moderate to long tests) the first element of 0 , namely 01, will provide a point
estimate which is approximately equivalent to the expectation of the marginal distribution
of 01.

(12)

(13)

8



GENERAL ABILITY MEASUREMENT 8

Testing Methods

A number of methods for general ability measurement have been applied in practice,
or suggested in the literature. Several alternatives are outlined below. These include one
traditional approach based on classical test theory, two adaptive testing approaches based
on unidimensional IRT, and two new approaches based on multidimensional IRT.

Conventional Number-Right

This procedure is the most commonly used method of measuring general abilities, and
is based largely on classical test theory. Typically, test items contained in the battery span
several content areas (e.g. math, verbal, spatial, reasoning, etc.). Most commonly, items are
scored correct or incorrect, and each examinee receives a total score reflecting the number
of correct responses across all scales. The total number-right score is taken as an indicator
of general ability. In some instances, subscores axe computed for each content area, and
the indicator of general ability is taken as a positively weighted sum of the subscores. If
the subscales are highly correlated, or if the number of scales is moderately large (10 or
more), composites computed from different sets of weights will be highly correlated. In
these instances, the choice of weights will tend to have little influence on the precision of
the composite score.

Unidimensional Adaptive Testing

Computerized adaptive testing has been demonstrated, in a number of actual and
simulated applications (Lord, 1980; Wainer et al., 1990; Weiss, 1978), to provide increased
measurement efficiency over conventional paper-and-pencil testing. Although different CAT
testing algorithms have been proposed and adopted, most share a common set of core
characteristics. Virtually all CAT algorithms are based on unidimensional IRT and employ
either the one-, two-, or three-parameter logistic response-model. Items are selected to
maximize Fisher or posterior information, and final test scores are obtained using maximum
likelihood or Bayesian estimation procedures. In principle, at least two different CAT
approaches exist for the measurement of a general test factor.

In one approach, the collection of items spanning the general ability of interest (e.g.
math and verbal) are treated as if they form a single pool. These items are calibrated
jointly, using for example BILOG (Zimowski, Muraki, Mislevy, & Bock, 1996), and item
selection and scoring are based on a unidimensional CAT algorithm. One criticism of this
approach is that a fundamental assumption (that of unidimensionality) is violated by the
item calibration, selection, and scoring algorithms. If the dimensions spanned by the items
from alternative scales are not highly correlated, this violation may reduce CAT efficiency
and call into question the important IRT quality of test-score invariance. However, if the
dimensions are highly correlated, the information provided by cross-scale responses may
improve the efficiency of item-selection and scoring over an approach which ignores this
information.

Multi-Unidimensional Adaptive Testing

Another CAT approach to the measurement of general abilities divides the test items
into homogenous (unidimensional) item pools, and measures each narrow ability by a sepa-

9



GENERAL ABILITY MEASUREMENT 9

rate adaptively administered test. For example, in the case of the Computerized Adaptive
Testing version of the Armed Services Vocational Aptitude Battery (Segall 8.6 Moreno,
1999), items spanning general trainability are divided into four homogenous scales: (a)
Arithmetic Reasoning, (b) Word Knowledge, (c) Paragraph Comprehension, and (d) Math
Knowledge. Items belonging to each scale were calibrated separately to obtain four pools
of unidimensional item parameter estimates. Abilities associated with each scale are mea-
sured by a short (15 item) adaptive test. Then, an estimate of general ability is formed from
a weighted composite of the four separately estimated ability-values. To the extent that
multidimensionality is reduced by forming individual scales, this procedure is preferable to
the unidimensional procedure described above. Since however information from cross-scale
responses is ignored by the item selection and scoring algorithms, the multi-unidimensional
procedure might provide less precise measures of general ability when the dimensions are
highly correlated.

Conventional Item Selection with MIRT-Scoring

By applying the multidimensional item response theory (MIRT) scoring algorithms to
conventional tests, yet another possibility exists for improving general ability measurement.
This approach requires test items be calibrated according to the hierarchical model (8).
Then the multidimensional vector of ability estimates can be obtained by the Bayesian
procedure (12) and (13), and the estimated value corresponding to the general dimension
191 would be taken as a measure of general ability. Lord (1980) illustrates that IRT scoring of
conventional unidimensional tests provides higher levels of information than number-right
scoring (p. 73). By explicitly modeling the effects of specific test variance on responses, it,
is likely that an even greater superiority over number-right scoring exists for conventional
multidimensional tests scored by MIRT methods. However, it remains to be seen how
much improvement in precision can be gained over number-right scoring by using this more
computationally intensive MIRT scoring method.

Multidimensional Adaptive Testing

Another MIRT method consists of applying a multidimensional adaptive testing algo-
rithm, such as the one proposed by Segall (1996). This algorithm however may be poorly
suited for the current problem since it selects items to maximize precision along all dimen-
sions simultaneously. In the current case, Segall's algorithm would select items to maximize
the precision of the nuisance dimensions, as well a's the general dimension. Conceivably
more precise measurement of the general ability parameter could be achieved by selecting
items to maximize its precision directly. van der Linden (in press) has proposed a multidi-
mensional item selection algorithm which minimizes the variance of the ML estimate for a
linear combination of abilities. An alternative Bayesian adaptive item selection algorithm
is presented below which chooses items to minimize the posterior variance of the general
ability parameter.

Suppose that k 1 items have already been administered, and the task is to decide
which item is to be selected as the next (k-th) item from the set of remaining items Rk. Let
the set of administered (or selected) items be denoted by Sk_1 = fi1,i2,...,i,k_11, whose
elements uniquely identify the items which are indexed in the pool according to i = 1, 2, ..., I.

1 0



GENERAL ABILITY MEASUREMENT 10

Further, let the set of remaining or candidate items be denoted by the compliment of Sk_l,
namely Rk = {1, 2, ..., /}\Sk-1.

One approach suggested by Bayesian decision theory is to select the item which min-
imizes the expected posterior variance of the general ability parameter. An estimate of
this variance can be obtained by approximating the posterior with a multivariate normal
density based on the curvature at the mode. Specifically, the posterior distribution f(Oluk)
(obtained after the administration of item i and observation of the associated response ui)
can be approximated by a normal distribution having mean equal to the posterior mode
Ok (calculated from the k 1 administered items), and covariance matrix Eilsk_1 equal

^k-1
to the inverse of the posterior information matrix evaluated at the mode 0 :

[Tilsk-1]-1 (14)

where the information matrix Tilsk_i is minus the expected Hessian (second derivative
matrix) of the log posterior

Tok_1=w2+I+ E w3
3ESk-1

and where Wi = D2ajaw7, and

Qi(0) Pi(0) 2

P(0) X 1 )
The posterior information matrix associated with candidate item i is formed from W-terms
associated with previously administered items Sk_1, and from a W-term associated with
the candidate item i. Given that the posterior distribution is normal or nearly so, the
first (upper-left) diagonal element of Eilsk_i will provide a suitable approximation to the
variance of the marginal posterior distribution of 01.

To implement this approach, MIRT item parameters must be specified according to
the parameterization given by (8). To select the k-th item, the posterior covariance matrix
(14) is calculated for each candidate itemthe item associated with the smallest variance-
term in the first (upper-left) diagonal element is selected for administration. The final ability
estimate for the general dimension is taken as the 01-element from the joint posterior mode
0 = 101,02,...,00' estimated from all responses according to (12) and (13).

Simulation Study

Compared to conventional testing methods, there are compelling theoretical benefits
for the application of MIRT scoring and item selection procedures to general ability mea-
surement. However, it remains to be seen if some of the model as.sumptions (i.e. asymptotic
normality of the posterior distribution) hold sufficiently well to produce the intended re-
sults. It also remains to be seen if the benefits of the MIRT procedures (increased precision
and reduced test-lengths) outweigh the additional computational complexities. A compar-
ison of alternative testing methods is made using simulated data based on a large scale
high-stakes selection battery: The Armed Services Vocational Aptitude Battery (ASVAB).
This battery, which has been shown to possess a large general-ability component (Ree
Earles, 1994) is used to qualify applicants for military service and training programs.

11
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Table 3: Item source for simulation pool.

Subtest No. of Items per Form No. of Forms Total
AR: Arithmetic Reasoning 30 4 120
WK: Word Knowledge 35 4 140
PC: Paragraph Comprehension 15 4 60
MK: Math Knowledge 25 4 100

Total 105 420

Item Pool

An artificial item pool of 420 items was modeled from the combination of four paper-
and-pencil forms of the ASVAB. The composition of the pool is displayed in Table 3. The
tri-factor pattern of discrimination parameters assumed for each of the four ASVAB forms
is specified in Table 2. Consistent with the hierarchical model (9), each item has three
nonzero discrimination values, one for the general factor, another for the math or verbal
factor, and a third for a subtest specific factor. For example, Arithmetic Reasoning items
load on the General factor (I), the Math factor (III), and an AR specific factor (IV). Thus
each AR item will possess at most three nonzero discrimination parameters among the seven
possible. A similar interpretation can be made for the other item types (WK, PC, and MK).
This pattern of constraints was assumed for each of the four ASVAB forms.

The IFACT item-parameter estimation procedure (Segall, 1998) was used to specify
item response functions (IRFs) according to the assumed tri-factor pattern. This procedure
performs a confirmatory IRT item-factor analysis, where the pattern of free and fixed item
loadings (discrimination values) is specified a priori. The IFACT procedure is based on
an extension of the Markov Chain Monte Carlo method proposed by Albert (1992). The
procedure expands Albert's approach from a single latent dimension to multiple latent
dimensions, allows user-specified discrimination parameters to be constrained to zero, and
incorporates a provision for estimating a guessing parameter. The procedure assumes that
the distribution of latent abilities is multivariate normal with mean vector 0 and unit-
diagonal covariance matrix I.

Two datasets (live and simulated) were used to mimic the situation where item-
responses are modeled by one set of true IRFs, but scoring and item selection are based on
another, possibly misspecified set of IRFs. The datasets and associated parameter estimates
are described below.

Live calibration data. Live calibration data for each of the four forms were gathered
from 12,000 applicants taking the ASVAB to qualify for service in the U. S. Military. Each
test-record contained responses to 105 items of either Form 1, Form 2, Form 3, or Form
4. The numbers of items from each content area (subtest) was fixed across formseach
form containing 30 AR items, 35 WK items, 15 PC items, and 25 MK items. Four separate
multidimensional IFACT calibrations were conducted, one for each form. Each calibration
placed constraints on the pattern of free and fixed discrimination parameters summarized
in Table 2. These parameters, denoted by IFACT(U), were treated as true (population)
values for generating item responses. Table 4 provides the means and standard deviations

12



GENERAL ABILITY MEASUREMENT 12

Table 4: Descriptive statistics for live data item parameters.

Discrimination Parameters ai
General Verbal Math AR WK PC MK Difficulty Guessing

Statistic I II III IV V VI VII
Arithmetic Reasoning

Mean 1.19 0.33 0.21 0.04 0.22
SD 0.48 0.39 0.34 0.68 0.08

Word Knowledge
Mean 0.91 0.67 0.17 -0.60 0.22

SD 0.29 0.42 0.37 0.93 0.06
Paragraph Comprehension

Mean 0.74 0.37 0.32 -0.52 0.21
SD 0.30 0.23 0.22 0.59 0.05

Math Knowledge
Mean 1.03 0.59 0.46 0.09 0.21

SD 0.32 0.46 0.56 0.51 0.08

(SD) of discrimination, difficulty, and guessing parameters for each content area.

Simulated calibration data. Four response sets were simulated from the correspond-
ing four-sets of multidimensional item parameter estimates obtained from live data. These
datasets were of the same form as the live-response datasets (four randomly equivalent
groups of 3000 respondents, 105 items per test, and ability 9 sampled from N(0, I). Three
different sets of item-selection/scoring parameters were obtained by applying different esti-
mation approaches to the simulated calibration data:

1. BILOG (Zimowski et al., 1996) was used to estimate unidimensional item
parameters from the collection of all 105 items of each form. These four sets of
parameter estimates were combined to form a single pool of 420 items.

2. BILOG was also used to estimate unidimensional 3PL item parameters for each
content area of each form, which resulted in 16 (= 4 forms x 4 content areas)
separate sets of parameter estimates. These 16 sets of parameter estimates were
combined into four pools of items-one pool for each content area: AR, WK,
PC, and MK. Pool sizes are listed in the last column of Table 3.

3. IFACT was used to estimate multidimensional item parameters using the same
design and discrimination-parameter constraints applied to the live datasets.
The resulting four sets of parameter estimates were combined to form a single
pool of 420 items. Root mean squared differences ([RMSD]; Hu lin, Lissak,
Drasgow, 1982) were computed between this set of IRFs (obtained from simu-
lated calibration data) and the true set (obtained from the live calibration data),
where the pairs of IRFs defined by (10) were evaluated at the 3,000 true abil-
ity values used to generate the simulated calibration data. The average RMSD
across all 420 items was 0.027.

1 3
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Conditions

To evaluate the precision of the alternative item selection and scoring strategies, con-
ditional distributions of test-scores for fixed levels of the general dimension were obtained.
For each of the five testing methods described below, 500 replications were conducted at
each of 31 equally spaced ability levels 3, 2.8, 2.6, ..., +2.8, +3 along the general di-
mension (01). For each replication, ability values for the secondary nuisance dimensions
(02,03, ..., 0p) were sampled from a multivariate normal distribution with mean vector 0,
and unit-diagonal covariance matrix. The 500 resulting test scores x for each level of 01
were used to estimate the first two moments of the conditional score distributions. These
moments are denoted by m(xI01) and Var(xI01) for the conditional mean and variance,
respectively.

The conditional test-score moments were examined for five different testing methods.
In each evaluation described below, the multidimensional item-parameters obtained from
live data IFACT(U) were used to generate responses. Parameters used for item selection
and scoring (if required) were obtained from values estimated by Approach 1, 2, or 3. The
adaptive testing methods consisted of fixed length tests (totaling 60-items) which was about
half the number of items administered by the conventional nonadaptive testing methods.
Based on previous research with unidimensional adaptive testing methods (e.g. Green, 1983;
McBride & Martin, 1983; Sands, Waters, & McBride, 1997; Urry, 1977) we would expect
the shorter adaptive tests to achieve about the same (or slightly higher) level of precision
as the conventional testing methods. Additional details of the simulation for each testing
method are provided below.

Conventional number-right (CONV-NR). This condition modeled number-right scor-
ing applied to a conventional administration of Form 1 of the ASVAB. For each simulated
test-taker, dichotomous responses were generated by evaluating the item response func-
tion (10) at the true ability level and comparing the probability value to a pseudo random
uniform number. A total number-right score was calculated from the sum of the 105 di-
chotomous item-scores.

Unidimensional adaptive testing (CAT-UNI). This condition modeled the application
of unidimensional adaptive testing algorithms to the multidimensional item pool. The item
pool consisted of all 420 items whose observed parameters were specified by Approach 1.
Item selection was based on ML information (Lord, 1980, Section 10.2), where each candi-
date item is evaluated at the provisional ability estimate. Provisional and final scoring was
based on unidimensional Bayesian posterior modal estimates, assuming a standard normal
prior. Fixed-length tests of 60 items were simulated for each test-taker. The posterior mode
based on all adaptively administered items was taken as an estimate of general ability.

Multi-unidimensional adaptive testing (CAT-MUNI). This condition modeled the ap-
plication of unidimensional adaptive testing algorithms to unidimensionalor nearly uni-
dimensional item pools. Four separately administered adaptive tests of 15 items each were
simulated for each test-taker, one test for each content area: AR, WK, PC, and MK.
The four pools of item parameters used for item-selection and scoring were specified by
Approach 2. Item selection was based on ML information, and scoring was based on
Bayesian posterior modal estimates. A final score, taken to be an estimate of general
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ability, was formed from the unit-weighed sum of the four modal estimates for each content
area: OAR + Own< Opc OMK

Conventional item selection with MIRT-scoring (CONV-MIRT). This condition mod-
eled MIRT scoring applied to a conventional administration of Form 1. For each simulated
test-taker, dichotomous responses were generated for the 105 items comprising Form 1.
Seven-dimensional Bayesian modal estimates were calculated from the parameters of Ap-
proach 3 corresponding to Form 1 items. The modal estimate 01 corresponding to the
general dimension was taken as an estimate of general ability.

Multidimensional adaptive testing (GMAT). This condition modeled the application
of the multidimensional adaptive testing algorithm given by (14), where items are selected
to minimize the posterior variance of the general ability parameter 01. Parameters for
item selection and scoring were specified by Approach 3. Fixed-length tests of 60 items
were simulated for each test-taker. The modal estimate 01 corresponding to the general
dimension of the joint posterior mode (based on all 60 responses) was taken as an estimate
of general ability.

Results

For each testing method, two different precision summaries were calculated: (a) a
score information function, and (b) a reliability index. An additional analysis examined
the distribution of content across ability ranges for the GMAT (multidimensional adaptive
testing) approach.

Score information. For each testing method, the information function of the associ-
ated scoring formula x (Birnbaum, 1968, Section 17.7)

m(x101)]
./(01,x) = (15)

Vax(x101)

was approximated from the first two moments of the conditional score-distributions. The
numerator of (15) was approximated by a cubic smoothing spline fit to the 31 conditional
means m(x101 = 3), m(x10i = 2.8), ...,m(x10i = 3) using an algorithm described by de
Boor (1978, p. 235-243). Since the cubic spline approximation is a piecewise polynomial of
order 4, the required derivatives were easily obtained by evaluation of the derivative of the
appropriate piecewise polynomial. The denominator of (15) was also approximated by a
smoothing spline fitted to the conditional variances. The resulting score information func-
tions are displayed in Figure 1. As indicted, the lowest level of information is observed for
the conventional number-right (CONV-NR) testing method. MIRT scoring of conventional
tests (CONV-MIRT) approximately doubles the level of information obtained from conven-
tional item responses. Both methods of unidimensional adaptive testing (CAT-UNI and
CAT-MUNI) demonstrate gains in precision over conventional number-right testing, but
fall somewhat sort of the level achieved by CONV-MIRT over the middle and lower ability
ranges. By far, the highest levels of information were observed for the multidimensional
adaptive testing procedure (GMAT) which displayed a several-fold increase in information
over competing methods.
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Reliability. The second precision measure 772 provides an estimate of the proportion
of variance of the test score x that can be predicted from 01:

where

= Var [rn (x101)] + E [Vas (x101)]

Var [rn (x101)]

31

Var [rn (x101)] = Wk [m (xlei = Lk) E (42 ,

k=1

31

E (x) = thk rn (401 = Lk) ,

k=1

31

E [Var (x101)] = Ewk Var (x101 = Lk) ,

k=1

and where the wk's are proportional to the height of the normal density evaluated at L1 =
3, L2 = 2.8, ..., L31 = 3. The wk's are normalized so Ek Wk = 1. This index provides
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Table 5: Reliability indices.

Condition
CONV-NR CAT-UNI CAT-MUNI CONV-MIRT GMAT

Test Length 105 60 60 105 60

772 .77 .80 .81 .86 .95

Table 6: Item content distribution by ability level (GMAT).

Ability Range
Content -3 < 0 < -1 -.8 < 0 < -.4 -.2 < 0 < .2 .4 < 0 < .8 1 < 0 < 3
AR 36.5 49.2 54.5 56.2 54.2
WK 26.6 13.6 10.6 9.7 12.4

PC 15.0 14.5 12.0 10.4 11.6

MK 21.9 22.7 22.9 23.7 21.8
Total 100.0 100.0 100.0 100.0 100.0

an estimate of the reliability of observed test scores for a population with 0 N(O, I). The
reliability values and test-lengths for each of the five conditions are displayed in Table 5.
As indicated, the conventional administration method scored by number-right (CONV-NR)
displays the lowest reliability. Both forms of unidimensional adaptive testing (CAT-UNI
and CAT-MUNI) display moderately higher values, with conventional administration scored
by MIRT (CONV-MIRT) displaying large gains in reliability over the other three methods.
The highest level of reliability is achieved by the multidimensional adaptive testing method
(GMAT) which displays near perfect measurement of the general dimension (ri2 = .95).

Content usage. Table 6 displays the distribution of content across five ability ranges
for the multidimensional adaptive testing approach (GMAT). As indicated, the balance of
math and verbal items appears to shift between the lower and higher ability ranges. Over
the lowest range, verbal items account for about 40% of the administered items. Over the
highest ability range, the percentage of administered verbal items falls to about 24%. This
is consistent with the mean difficulty value displayed for WK in Table 4, which indicates
that a large portion of the WK items discriminate over the lower ability range. On average,
AR accounts for about half of the administered items, MK for about 23-percent, and WK
and PC for about 13-percent each. The predominance of AR items is consistent with their
high average discrimination parameter value for the general dimension, and somewhat lower
loading values on the nuisance dimensions, as displayed in Table 4.

Conclusions and Discussion

The results presented here indicate that substantial gains in the measurement effi-
ciency of a general test factor can be achieved by application of the proposed MIRT strate-
gies. These strategies parameterize the hierarchical ability model in terms of uncorrelated
general and specific abilities. Bayesian MIRT estimation of the general ability parame-
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ter for a conventional test (using the appropriate model) displays a significant increase in
precision over number-right scoring methods, and a moderate increase in precision over
unidimensional adaptive testing methods. Substantial gains in measurement efficiency are
observed for the multidimensional adaptive testing approach which selects items to mini-
mize the posterior variance of the general ability parameter. Using this approach, a several
fold increase in information can be achieved over unidimensional adaptive and conventional
testing strategies, resulting in near perfect measurement of the general test factor.

One factor precipitating the dramatic increase in precision by MIRT methods is the
poor performance of conventional and unidimensional IRT methods for measuring the gen-
eral test dimension. For example, conventional administration with number-right scoring
(CONV-NR) produced a reliability estimate of just 0.77. Note that this estimate is substan-
tially lower than published measures of ASVAB reliability (of about 0.92) based on a similar
population of examinees (Palmer, Hartke, Ree, Welsh, & Valentine, 1988). This discrepancy
is likely due to the way in which the nuisance variance influences precision estimates such as
alternate forms reliability coefficients. Because each nuisance dimension spans across forms,
it is likely that a large portion of the resulting covariance between forms is inappropriately
classified as true-score variance, thus inflating the reliability estimate. A similar argument
can be made for the discrepancy between observed and published information functions for
conventional and unidimensional CAT testing methods. Unless information is examined in
the context of the appropriate MIRT model, covariation in item performance caused by the
nuisance dimensions will likely lead to inappropriately inflated precision estimates.

One interesting finding arrises from an examination of the mixture of item content
administered as a function of general ability level (Table 6). In general, we would expect
the usage rates of item-types constituting a large portion of the item pool (last column of
Table 3) to be higher than those with a smaller representation in the pool. The rationale
being that among larger item-groups, there are likely to be more items of high information
or appropriate difficulty than among a smaller item-group. Compared to their proportional
representation in the pool, AR items appear to be over-administered by a ratio of about 2 : 1,

while the number of WK items appears to be under represented by a ratio of about 1 : 2.
The numbers of administered PC and MK items appear proportional to their representation
in the pool. The other content-related finding of interest is the shift in administration
frequency of AR and WK items across ability levels: WK items were administered more
frequently to low ability test-takers, while AR items were administered more frequently
to moderate and high ability test-takers. These findings suggest AR items are a more
useful measure of general ability than the other item-types studied here, while the relative
usefulness of WK and AR items depends on ability level. Additional studies of other pools
would be required to determine if this finding is a general trend related to item-content, or
is unique to the specific ASVAB item-pool examined.

Before the proposed MIRT item selection and scoring methods are routinely applied,
several areas of investigation would be productive. First, the development of a confirma-
tory item-factor analytic procedure for testing the fit of alternative hierarchical battery
structures would be usefulone which used all the information contained in the pattern of
responses. Existing confirmatory item-factor analytic methods model item-covariances, and
thus provide less information than might otherwise be achieved. Second, multidimensional
item calibration using such methods as the IFACT procedure should be further investigated
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to examine the sample sizes required for sufficiently accurate item-parameter estimation.
Smaller sample-size requirements would facilitate the application of the proposed MIRT
approach. Third, the usefulness of conventional non-adaptive tests for measuring general
ability might be significantly enhanced by the expansion of existing test-assembly proce-
dures (e.g. Swanson & Stocking, 1993; van der Linden & Boekkooi-Timminga, 1989) to
incorporate target precision-levels of the general test-factor into the objective function for
choosing items. Typical test-assembly models applied to general aptitude batteries choose
items to maximize precision along narrowly defined sub-dimensions without consideration
of the items' effect on the measurement of a general test factor.

The proposed MIRT methods can be applied to less general areas of knowledge or
ability than those applications involving "general mental ability." For example, when mea-
suring foreign language proficiency, reading, writing, speaking, and listening may be treated
as nuisance dimensions with a general factor underlying performance in these four areas.
This underscores the fact that caution should be exercised in interpreting the general factor
measuredthis factor may not necessary be equivalent to the general cognitive ability of
interest since its nature depends on the tests entered into the battery (Jensen, 1998, Chap-
ter 4). For example, the general factor estimated from a battery consisting of only verbal
tests would contain specific (verbal) variance, as well as g. The general ability estimate
obtained by the proposed MIRT methods is dependent on both: (a) the general factor that
spans all tests contained in the battery, and (b) the specific sources of test-variance that in
effect define and eliminate unwanted sources of variance.

The results presented here indicate that substantial gains in precision for the mea-
surement of a general test factor can be achieved by application of the proposed MIRT
item-selection and scoring algorithms. If this result holds for other test-batteries, the pre-
diction of learning and performance can be significantly enhanced in a wide variety of
instances in which standardized tests are used.
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